Schur-convexity and the Simpson formula

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schur-convexity, Schur-geometric and Schur-harmonic convexity for a composite function of complete symmetric function

In this paper, using the properties of Schur-convex function, Schur-geometrically convex function and Schur-harmonically convex function, we provide much simpler proofs of the Schur-convexity, Schur-geometric convexity and Schur-harmonic convexity for a composite function of the complete symmetric function.

متن کامل

Schur-convexity and Schur-geometrically concavity of Gini means

The monotonicity and the Schur-convexity with parameters (s, t) in R2 for fixed (x, y) and the Schur-convexity and the Schur-geometrically convexity with variables (x, y) in R++ for fixed (s, t) of Gini mean G(r, s;x, y) are discussed. Some new inequalities are obtained.

متن کامل

Schur Power Convexity of the Daróczy Means

In this paper, the Schur convexity is generalized to Schur f -convexity, which contains the Schur geometrical convexity, harmonic convexity and so on. When f : R+ →R is defined by f (x) = (xm−1)/m if m = 0 and f (x) = lnx if m = 0 , the necessary and sufficient conditions for f -convexity (is called Schur m -power convexity) of Daróczy means are given, which improve, generalize and unify Shi et...

متن کامل

Schur–convexity, Schur Geometric and Schur Harmonic Convexities of Dual Form of a Class Symmetric Functions

By the properties of Schur-convex function, Schur geometrically convex function and Schur harmonically convex function, Schur-convexity, Schur geometric and Schur harmonic convexities of the dual form for a class of symmetric functions are simply proved. As an application, several inequalities are obtained, some of which extend the known ones. Mathematics subject classification (2010): 26D15, 0...

متن کامل

On Schur Convexity of Some Symmetric Functions

For x x1, x2, . . . , xn ∈ 0, 1 n and r ∈ {1, 2, . . . , n}, the symmetric function Fn x, r is defined as Fn x, r Fn x1, x2, . . . , xn; r ∑ 1≤i1<i2 ···<ir≤n ∏r j 1 1 xij / 1−xij , where i1, i2, . . . , in are positive integers. In this paper, the Schur convexity, Schur multiplicative convexity, and Schur harmonic convexity of Fn x, r are discussed. As consequences, several inequalities are est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2011

ISSN: 0893-9659

DOI: 10.1016/j.aml.2011.03.047